
Building an authentication system under strict

real-world constraints

Jan Schejbal

Abstract

This article presents thoughts and concepts for building an authentication
system under the constraints of a real-world scenario. It gives an overview
and comparison of the various ways such a system can be constructed and the
advantages and drawbacks of the different methods. A part of this proposal
shows a way to allow reliable authentication without revealing the full identity
of the participants to the authentication system. The contents of this article
are based on an actual scenario and the system described will be proposed for
actual deployment. The proposed system enables users to authenticate to third
parties which are neither known to nor trusted by the organization operating
the system. Furthermore, it protects the privacy of the users and allows reliable
identification of members of the deploying organization without requiring direct
access to the membership database.

1 Introduction

In the past, authentication realms did seldomly span multiple organizations.
Today, web applications make it necessary to allow users to authenticate to
third parties, often unknown to the organization operating the authentication
system.

In this case, we attempt to build an authentication system for a small po-
litical party in Germany. The system is supposed to allow members to prove
their membership status to services operated by third parties unknown to the
operators of the authentication system, and to provide single sign-on both for
internal services and services operated by third parties. Ideally, third parties
should receive only the data necessary to verify certain access rights, for example
the information that the authenticated person is a member, without revealing
any additional information.

Most of the data involved in the authentication process (including the fact
that a certain person is a member) are highly sensitive. To protect membership
information, the membership database is kept on a separate, closed system with
very strict access control. The department responsible for implementing the
authentication system does not have a direct need to know and hence has no
access to that system.

A pseudonymous solution, where only minimal information about users is
known to the authentication system, has to be considered.

As the organization implementing the system is still relatively small and
relies mostly on volunteers, both manpower and financial resources are limited,
but highly skilled and dedicated IT volunteers are available. The design of the
system needs to reflect that.

The central membership database contains for each member (among other
things) the membership number (unique ID), the name, the postal address, an
e-mail address, and information about membership in the regional and local
chapters. Using the postal address for verification purposes is not possible due
to the prohibitive cost associated with mailing each member.

1



For privacy reaons, any registration or account creation in the authentication
system needs to be voluntary and initiated by the user (opt-in). Simply creating
an account for every member and sending an initial password to the registered
e-mail address is therefore not an option.

In building an authentication system that fits these constraints, two separate
problems need to be solved: First, the identity of users wishing to participate
in the system needs to be verified. Then, secure authentication to the third
parties has to be handled. As the identity checking step is very specific to
the organization, a custom solution is required. For the authentication step,
widely used and accepted protocols allow third parties to easily implement the
authentication in their applications. Using a (perhaps modified) single-sign-on
or decentralized authentication solution is a good way to achieve this.

The following section presents a possible approach to the identity checking
problem. In the next section, the authentication protocols that could be used for
the authentication step are listed, analyzed and compared. After a short section
giving an overview of possible further research topics, a conclusion summarizes
the findings in this work and proposes a design for the authentication system.

2 Identity checking

As explained in the introduction, on-line verification of user identities is not
possible. Personal verification of identities, either trough trusted volunteers or
based on a web of trust similar to the one used by the CAcert certification
authority [1] requires too much effort and is not required for the desired security
level.

The easiest way to verify users is using the e-mail addresses stored in the
membership database. One way of doing this would be generating a random
unique token for each member and e-mailing it to the registered address. Knowl-
edge of this token could then be used as a proof of ownership of that e-mail
address and thus as a proof of being the member with which that address is
associated.

Another way would be to require users to enter their membership ID and
e-mail-address into a registration form, then e-mailing an confirmation link con-
taining a token to that address, and checking the address against the member-
ship database after the user proved his ownership by clicking the confirmation
link.

The first method requires the use of all e-mail addresses from the membership
database and would mean that everyone would get a token. As this would affect
even members who did not opt in, this could lead to some controversy. For this
reason, this could probaly only be done together with a regular mailing (like
an invitation to the annual party convention). This method would allow simple
user verification by entering the token. This would automatically identify the
user and could then serve to trigger the export of the required data about that
member from the membership database to the authentification system.

The second method avoids any usage of membership data before opt-in, but
poses several other risks: Entering an e-mail address of another person would
cause that person to get a verification mail. Altough this risk exists in most
on-line registration systems, it still may be wise to avoid it. This could be done
using a multi-step approach, i.e. requiring the user to enter some additional data
which is available in the membership database but not to the general public and
checking those against the database before sending out the confirmation mail -
then exporting the membership data after the e-mail address was verified using
the confirmation link. This would cause additional delay and workload, as each
operation on the membership database needs to be performed by a person with
appropriate access rights. An additional issue would be members forgetting
which e-mail address is their membership address: If a different address is used,

2



membership verification will fail.

For the reasons mentioned above, the first method is preferable if sending
tokens to all users can be accepted. If this is not possible, the second method
can be used to still perform a secure identity verification.

The first method would also allow the creation of pseudonymous accounts,
while maintaining the limit of one account per member and allowing to dis-
able accounts when the member leaves the organization: For this, the list of
tokens (or hashes of the tokens) combined with the corresponding information
about the chapters in which the token owner is a member could be sent to the
authentication system operators. As this list contains no personally identifying
information, it could be provided before the user presents the token, which would
ensure that user registrations can be handled without delay. The token could
be used to inform the authentication system operators about leaving members.
Building the system this way would make sure that no critical data has to be
stored outside the security database, but the system would be unable to allow
members to verify their exact identity (e.g. real name) to third parties. The ad-
vantages and disadvantages should be considered carefully, as most applications
for which the system is expected to be used (e.g. survey systems, discussion
plattforms) do not require strong identity verification.

For the non-pseudonymous variant, once the user identity is verified, the
required information would be transferred to the authentication system. The
tokens (if used and not given to the authentication system operators) could
serve as a proof of user consent, so that exporting the data without user consent
would not be possible. A combined approach, where by default accounts are
pseudonymous but can be linked to a full identity, could be considered.

Another verification method would be the usage of hashes over the relevant
data - giving a list of hashes to the operators of the authentication system
would allow them to verify data entered by users, without having access to
plain text data of non-participating users. However the hash list would still
require protection, as dictionary-style lookup attacks are possible (for example,
given the name and address of a person, checking if they are a member would be
possible with access to the hashes). As this method also creates problems (users
have to enter exactly matching information) and provides limited protection, it
can not be recommended.

3 Analysis of authentication standards and
technologies

This section gives an overview, analysis and comparision of possible standards
and technologies that could be used to build the authentication part of the
suggested authentication system.

3.1 X.509 client certificates

X.509 client certificates [2] could be issued by a self-signed CA. This requires
no significant cost, limited effort, and allows storing the most critical parts of
the system (certificate databases, private keys) on offline machines. Using a
self-signed CA makes the system independent of policy requirements by third
parties (CAs) and ensures that service providers using the system have to set
it up specifically for accepting (only) certificates issued by this organization,
avoiding problems if one of the over thousand [3] of regular CAs is compromised.

As not all members can be expected to be skilled and experienced com-
puter users, the enrollment process needs to be as simple as possibe. Using the
<KEYGEN> tag specified in HTML5 and implemented in all major browsers
except Internet Explorer [4], key generation and certificate enrollment can be

3



made very user-friendly. Additionaly step-by-step guides are necessary to edu-
cate users about private key security practices, backing up their key and usage.
An important aspect of using X.509 certificates is that it makes phishing attacks
impossible.

However, X.509 certificates make it difficult for users to use the system when
not working from their home computer. As some members may want to be able
to access services from work, cyber cafes or their mobile devices, this could
pose a problem. Setup guides for transferring the certificates to common mobile
devices would need to be created.

The certificates can be used directly for authentication to applications or to
authenticate to a trusted server which is part of the authentication system. The
server could then filter and further pseudonymize the data before forwarding
them to the application. Authentication directly to applications would not only
disclose all data inside the certificates, but also allow different application oper-
ators to link user profiles, for example using the serial number of the certificate.
Issuing multiple certificates to the same user (for example with different levels
of information) would reduce usability too much for less experienced users.

Direct authentication would allow users to authenticate to applications with-
out a central authentication system being able to observe which applications
users are using. However, using OCSP [5] to verify certificate validity would
compromise this, as the OCSP responder could observe the queries. For this
reason, the certificate validity must be ensured using Certificate Revocation
Lists (CRLs).

Certificates can contain multiple OU (organizational unit) entries, which
would allow specifying all chapter memberships. The membership ID, if sup-
posed to be included, or a corresponding pseudonym, should be placed in the
UID entry, which is also multi-valued.

Due to the mentioned privacy and usability issues, X.509 certificates should
not be used for direct authentication to applications, especially not when they
would contain full names. They could be considered for login to an authentica-
tion server, at least as one of multiple options.

3.2 OpenID

OpenID [6] is an open protocol meant to allow using a central identity to login on
any web site or application. It fits the scenario presented here reasonably well.
With OpenID, a user wishing to log into an application provides his OpenID
identity URL. The OpenID consumer library at the application then performs
a discovery process and redirects the browser to the OpenID provider. The user
then logs in to his OpenID provider and confirms that he wants to log in to
the requesting web site. The user is then redirected back to the web site or
application, which (in the simple variant of the protocol)[6] then verifies if the
authentication was correctly performed by asking the OpenID provider.

OpenID 2.0 supports the usage of pseudonymous identifiers [6]. To operate
in this mode (called identifier select), an anonymous identity URL specifying
only the OpenID provider is used, together with a ‘magic value’ indicating this
mode instead of a real user identifier. The OpenID provider then generates a
pseudonymous identifier and returns it when confirming the successful authen-
tication. To obtain a service-specific pseudonymous identifier, a user-unique
secret can be hashed with the realm value, which is supplied by the application
requesting authentication and usually consists of the applications domain. As
the applications would be limited to a single OpenID provider, the identity URL
could be hardcoded so no additional user interaction would be required.

Additional information about the user can be transferred using the OpenID
Attribute Exchange protocol [7], which is also part of OpenID 2.0. This can be
used to transmit further information like chapter membership.

4



OpenID is widely supported in a number of existing web applications. There
are numerous free and open libraries that allow application operators to imple-
ment OpenID very quickly. The OpenID protocol is very complex and requires
the usage of a large and complex library. This complexity increases the proba-
bility of security issues inside the library.

A disadvantage of using OpenID is that the authorization server knows when
a user logged on to which service. OpenID is prone to phishing attacks, as
the user is redirected from an untrusted site to the authentication server. To
mitigate this risk, users need to be educated to check the identity of the OpenID
server (for example using the SSL indicator in the browser UI).

Despite these problems, OpenID is a good choice for the authentication part
of the problem due to its features and widespread support.

3.3 SAML

SAML [8] shares many properties with OpenID. Although it is an older standard
(defined in 2002, while OpenID was defined in 2005), it seems less wide-spread
than OpenID. SAML is a framework allowing for a wide variety of uses, while
OpenID is tailored to web application single-sign-on. SAML is thus more com-
plex than OpenID, allowing for more flexibility but requiring even more complex
libraries. To illustrate the complexity, it is important to note that SAML is based
on XML and SOAP, two already highly complex standards, extended with addi-
tional standards like XML Signatures. When used in a specific scenario, some of
the complexity can be removed by limiting the features used, either by selection
of one of the existing profiles or by creating an own profile.

Due to the higher flexibility, anonymous and pseudonymous logins are easier
to achieve (using SAML assertions) than in OpenID, as SAML allows subjects
to be identified with transient (anonymous) identifiers, while OpenID is more
fixed on the identity-based approach. OpenID seems better for a scenario where
many different authentication providers are supposed to be used, while SAML
seems better for a scenario like this, where only a single provider exists.

SAML is preferable to OpenID in terms of features, however, limited library
support, additional complexity and the fact that OpenID is more well-known
are strong disadvantages. Still, it is a protocol well-suited for this scenario and
on par with OpenID.

3.4 Proprietary solution

Creating a proprietary protocol should generally be avoided, as it is very easy to
make security-relevant mistakes. Using a non-standard protocol would require
creation of custom client libraries for a number of languages. On the other
hand, the protocol could be tailored perfectly to the needs of the given scenario
and avoid much complexity. No complex third-party libraries (with potential
security issues due to the complexity) would be required. The additional effort
for development and creation of client libraries may be less than the effort needed
to understand and use a highly complex library. Even if using existing libraries
was easy, potential implementors (relying parties) could be scared away from
using the system by seemingly complex standards like SAML.

Due to the risks and disadvantages of a proprietary, self-developed solution,
this should only be considered if easy-to-use library support for existing pro-
tocols is insuffcient either on the side of relying party or the authentication
provider. If this way is chosen, the methods used in existing protocols should
be simplified but re-used and both protocol and code have to be extremely well
reviewed by experts. The limited complexity would make this possible, but still
difficult.

5



3.5 OAuth

OAuth [9] is an open protocol meant for web application authorization. Its pri-
mary purpose is to enable users to allow one web application to access another
(web) application in the name of the user. This could be used for the purpose
of user identification: The user would allow the application to access his iden-
tity data on the authorization system. However, this would be a workaround.
OpenID is a protocol which has very similar properties, fits the given purpose
better and should thus be preferred.

3.6 LDAP, Kerberos

LDAP [10] is a well-established protocol and supported by many existing web
applications for authentication. However, LDAP is not an authentication sys-
tem, it is a way to access a directory (database). While it can be easily used to
store and retrieve authentication information, it does not provide single-sign-on
or a useful way to authenticate to third parties. Authentication using LDAP
usually means that the user gives his password to the application which then
checks it against the LDAP server. This is not suitable for this scenario, espe-
cially as the user needs to have a comfortable way to select which information
should be disclosed to the application and the application is not supposed to
know the password of the user.

Kerberos [11] is designed as a single-sign-on solution inside organizations and
is more focused on client-server applications as opposed to web applications. It
is not really suitable for this scenario, either. Using Kerberos is difficult for
application providers.

3.7 Exotic cryptographic identity management stan-
dards

There are special protocols using advanced cryptographic schemes like blind sig-
natures and zero-knowledge proofs which are built to fulfill exactly the required
purpose, i.e. anonymous or pseudonymous authentication while proving some
properties like membership.

An example of this would be Microsofts U-Prove [12] or IBMs Identity Mixer
[13]. Libraries for those systems are released under a license allowing free public
usage. These systems would avoid some of the problems present in the systems
suggested above, like leaking linkable pseudonyms to services (with X.509) or
the authentication server being able to observe user activity (for example with
OpenID). However, these highly complex systems are not supported by common
web applications and few libraries for them exist. This would make it very
difficult for application providers to implement such an authentication scheme.
For this reason, using any of these protocols is not advisable.

4 Further research

It is necessary to review and compare existing libaries and select ones that
contain the required features and could be used in such a scenario. The code
of the libraries should be reviewed to ensure security was kept in mind by the
creators of the libraries.

For SAML, a suitable profile needs to be selected or designed. If a proprietary
protocol is chosen, it has to be designed, implemented and reviewed.

Legal aspects of the proposed system (especially privacy/data protection
laws) need to be checked and may require changes to the design.

6



5 Conclusion

Even with the strict constraints and requirements, it is possible to build a secure
authentication system using open standards. The proposed system is easy to
set up and maintain, preserves user privacy and can be easily implemented by
application providers.

The best method to securely identify users in the given scenario is generating
a token for each user inside the secure membership database and sending those
tokens to the users. Hashes of those tokens (or parts of it), linked to anonymous
information about chapter membership, should be provided to the authentica-
tion system operators to allow direct verification and creation of pseudonymous
accounts. (Providing chapter membership information after user registration
would be possible, but this would remove the ability of instant account cre-
ation.) Name-based accounts can be offered as an option, possibly by requiring
the user to enter a second (part of the) token before the corresponding data is
transferred from the membership database to the authentication system.

For privacy reasons, client certificates should not be used for direct authenti-
cation to applications. (If they are used this way, CRLs should be used instead
of OCSP to check for revoked certificates.) Client certificates can be used for
authentication to an authentication server, either as the only way or as an op-
tional alternative to password-based authentication. Information about the user
(name, chapter memberships) could be stored exclusively in the certificate to
ensure that no personal data is stored on the authentication server. The authen-
tication server would then retrieve this information from the certificate when it
is presented by the user.

The authentication server should use either OpenID with application-specific
random pseudonyms, or SAML using transient anonymous user identifiers with
all identifying information inside the assertion. This ensures user privacy while
still allowing the application to know all required information (i.e. the member-
ship status of the user). Anonymous usage, i.e. pseudonyms changing for each
login, could be offered as an optional service for applications that only want
to limit access to members, but do not need to distinguish users (or recognize
returning ones). In case of OpenID, the membership information is exchanged
using OpenID Attribute Exchange. In case of SAML, it is contained in the as-
sertion. For OpenID, the usage of pseudonyms and OpenID Attribute Exchange
limits the possible configuration choices and requires the usage of version 2.0 of
the OpenID protocol.

Users need to be educated about secure usage of the authentication system,
i.e. verifying the identity of the login server before entering their password.
The server will be able to observe which user uses which service at which time.
To lessen this problem, logging should be restricted to the minimum needed for
secure operation. Additionally, applications could implement their own indepen-
dent login systems for regular usage and require only one authentication against
the authentication system to confirm membership status after the account was
created, and at regular intervals to verify that the membership information is
still current.

Applications can use one of the existing libraries available for most program-
ming languages to easily verify membership information using this system. They
need to restrict their implementation to only accept identities from the authen-
tication server provided by the system, and check for the specified attributes.

The decision between OpenID and SAML should be based on available li-
brary support. Only if no easy-to-use libraries for OpenID and SAML exist
should an approach using a simple but proprietary protocol be considered. This
protocol would take the place of OpenID/SAML in the system. Relying party
libraries would need to be provided in a number of languages and a thorough
review of both protocol and implementation would be necessary.

7



References

[1] CAcert. Assurance Policy, 2008-2009.
http://www.cacert.org/policy/AssurancePolicy.php.

[2] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.
Internet X.509 Public Key Infrastructure Certificate and Certificate Revo-
cation List (CRL) Profile. RFC 5280 (Proposed Standard), May 2008.
http://www.ietf.org/rfc/rfc5280.txt.

[3] Peter Eckersley and Jesse Burns. Is the SSLiverse a Safe Place? 27C3,
2010.
https://www.eff.org/files/ccc2010.pdf.

[4] MDC Doc Center. keygen.
https://developer.mozilla.org/En/HTML/Element/keygen.

[5] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Inter-
net Public Key Infrastructure Online Certificate Status Protocol - OCSP.
RFC 2560 (Proposed Standard), June 1999.
http://www.ietf.org/rfc/rfc2560.txt.

[6] OpenID Authentication 2.0 - Final. OpenID Specifications.
http://openid.net/specs/openid-authentication-2_0.html.

[7] OpenID Attribute Exchange 1.0 - Final. OpenID Specifications.
http://openid.net/specs/openid-attribute-exchange-1_0.html.

[8] SAML Specifications. OASIS Standard, 2003-2009.
http://saml.xml.org/saml-specifications.

[9] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849 (Informational),
April 2010.
http://www.ietf.org/rfc/rfc5849.txt.

[10] K. Zeilenga. Lightweight Directory Access Protocol (LDAP): Technical
Specification Road Map. RFC 4510 (Proposed Standard), June 2006.
http://www.ietf.org/rfc/rfc4510.txt.

[11] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentication ser-
vice for computer networks. IEEE Communications 32(9) 33-38, september
1994.
http://nii.isi.edu/publications/kerberos-neuman-tso.html.

[12] Stefan Brands. Rethinking Public Key Infrastructures and Digital Certifi-
cates; Building in Privacy. The MIT Press, August 2000.
http://www.credentica.com/the_mit_pressbook.html.

[13] IBM Research - Zurich. Specification of the Identity Mixer Cryptographic
Library.
http://www.zurich.ibm.com/~pbi/identityMixer_gettingStarted/

ProtocolSpecification_2-3-2.pdf.

8

http://www.cacert.org/policy/AssurancePolicy.php
http://www.ietf.org/rfc/rfc5280.txt
https://www.eff.org/files/ccc2010.pdf
https://developer.mozilla.org/En/HTML/Element/keygen
http://www.ietf.org/rfc/rfc2560.txt
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://saml.xml.org/saml-specifications
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc4510.txt
http://nii.isi.edu/publications/kerberos-neuman-tso.html
http://www.credentica.com/the_mit_pressbook.html
http://www.zurich.ibm.com/~pbi/identityMixer_gettingStarted/ProtocolSpecification_2-3-2.pdf
http://www.zurich.ibm.com/~pbi/identityMixer_gettingStarted/ProtocolSpecification_2-3-2.pdf

	Introduction
	Identity checking
	Analysis of authentication standards and technologies
	X.509 client certificates
	OpenID
	SAML
	Proprietary solution
	OAuth
	LDAP, Kerberos
	Exotic cryptographic identity management standards

	Further research
	Conclusion

